Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.697
Filtrar
1.
Biochim Biophys Acta Gen Subj ; 1868(6): 130613, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593934

RESUMO

BACKGROUND: Serum albumin is the most abundant protein in the Mammalia blood plasma at where plays a decisive role in the transport wide variety of hydrophobic ligands. BSA undergoes oxidative modifications like the carbonylation by the reactive carbonyl species (RCSs) 4-hydroxy-2-nonenal (HNE), 4 hydroxy-2-hexenal (HHE), malondialdehyde (MDA) and 4-oxo-2-nonenal (ONE), among others. The structural and functional changes induced by protein carbonylation have been associated with the advancement of neurodegenerative, cardiovascular, metabolic and cancer diseases. METHODS: To elucidate structural effects of protein carbonylation with RCSs on BSA, parameters for six new non-standard amino acids were designated and molecular dynamics simulations of its mono­carbonylated-BSA systems were conducted in the AMBER force field. Trajectories were evaluated by RMSD, RMSF, PCA, RoG and SASA analysis. RESULTS: An increase in the conformational instability for all proteins modified with local changes were observed, without significant changes on the BSA global three-dimensional folding. A more relaxed compaction level and major solvent accessible surface area for modified systems was found. Four regions of high molecular fluctuation were identified in all modified systems, being the subdomains IA and IIIB those with the most remarkable local conformational changes. Regarding essential modes of domain movements, it was evidenced that the most representatives were those related to IA subdomain, while IIIB subdomain presented discrete changes. CONCLUSIONS: RCSs induces local structural changes on mono­carbonylated BSA. Also, this study extends our knowledge on how carbonylation by RCSs induce structural effects on proteins.


Assuntos
Aldeídos , Peroxidação de Lipídeos , Simulação de Dinâmica Molecular , Carbonilação Proteica , Soroalbumina Bovina , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Animais , Aldeídos/química , Aldeídos/metabolismo , Bovinos , Malondialdeído/metabolismo , Malondialdeído/química , Conformação Proteica
2.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542166

RESUMO

Diabetic retinopathy (DR) severely affects vision in individuals with diabetes. High glucose (HG) induces oxidative stress in retinal cells, a key contributor to DR development. Previous studies suggest that fibroblast growth factor-1 (FGF-1) can mitigate hyperglycemia and protect tissues from HG-induced damage. However, the specific effects and mechanisms of FGF-1 on DR remain unclear. In our study, FGF-1-pretreated adult retinal pigment epithelial (ARPE)-19 cells were employed to investigate. Results indicate that FGF-1 significantly attenuated HG-induced oxidative stress, including reactive oxygen species, DNA damage, protein carbonyl content, and lipid peroxidation. FGF-1 also modulated the expression of oxidative and antioxidative enzymes. Mechanistic investigations showed that HG induced high endoplasmic reticulum (ER) stress and upregulated specific proteins associated with apoptosis. FGF-1 effectively alleviated ER stress, reduced apoptosis, and restored autophagy through the adenosine monophosphate-activated protein kinase/mammalian target of the rapamycin signaling pathway. We observed that the changes induced by HG were dose-dependently reversed by FGF-1. Higher concentrations of FGF-1 (5 and 10 ng/mL) exhibited increased effectiveness in mitigating HG-induced damage, reaching statistical significance (p < 0.05). In conclusion, our study underscores the promising potential of FGF-1 as a safeguard against DR. FGF-1 emerges as a formidable intervention, attenuating oxidative stress, ER stress, and apoptosis, while concurrently promoting autophagy. This multifaceted impact positions FGF-1 as a compelling candidate for alleviating retinal cell damage in the complex pathogenesis of DR.


Assuntos
Retinopatia Diabética , Fator 1 de Crescimento de Fibroblastos , Humanos , Fator 1 de Crescimento de Fibroblastos/farmacologia , Fator 1 de Crescimento de Fibroblastos/metabolismo , Carbonilação Proteica , Epitélio Pigmentado da Retina/metabolismo , Estresse Oxidativo , Apoptose , Estresse do Retículo Endoplasmático , Autofagia , Retinopatia Diabética/metabolismo , Glucose/toxicidade , Glucose/metabolismo , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo
3.
J Burn Care Res ; 45(3): 777-789, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38245850

RESUMO

Postburn hypermetabolism remains an important clinical problem. During this phase, there is a significant loss of diaphragmatic proteins. Better understanding of respiratory muscle dynamics and potential mechanisms affecting respiratory muscle function is necessary for the development of effective therapeutic approaches. Male Wistar rats were subjected to 50% TBSA burns and sham injuries, and respiratory muscle function was assessed with 0, 1, 4, 7, and 14 days postinjury, including pulmonary function, blood gas analysis, transdiaphragmatic pressure, diaphragm ultrasonography, isolated diaphragm contractility, fatigue index, protein oxidative stress content, and ATP levels. Burned rats had significantly reduced inspiratory time, expiratory time, and tidal volume and significantly increased respiratory rate and minute ventilation. At the same time, the isolated diaphragm contractility, specific force during fatigue, and fatigue index were significantly decreased in the burned rats. Pdi, Pdimax, diaphragm thickness, diaphragm thickening fraction, and diaphragm excursion also decreased significantly postburn, whereas the Pdi/Pdimax ratio increased significantly. Finally, the content of protein carbonyls and lactic acid of burned rats was increased, and ATP levels of burned rats were decreased. The present study demonstrates the dynamic changes in diaphragm contractile properties postburn from both in vivo and in vitro perspectives, while cursorily exploring the possibility that protein oxidative stress and reduced ATP production may be the cause of diaphragm dysfunction. This understanding contributes to the development of methods to mitigate the extent of diaphragmatic function loss after severe burns.


Assuntos
Queimaduras , Contração Muscular , Ratos Wistar , Animais , Masculino , Ratos , Queimaduras/fisiopatologia , Queimaduras/complicações , Queimaduras/metabolismo , Contração Muscular/fisiologia , Estresse Oxidativo , Diafragma/fisiopatologia , Músculos Respiratórios/fisiopatologia , Modelos Animais de Doenças , Carbonilação Proteica , Trifosfato de Adenosina/metabolismo , Fadiga Muscular/fisiologia
4.
J Biochem Mol Toxicol ; 38(1): e23580, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37961937

RESUMO

Alzheimer's disease (AD) is one of the major devastating neurodegenerative disorders associated with the gradual decline of an individual's memory, cognition, and ability to carry out day-to-day activities. In the present study, the neuroprotective ability of α-bisabolol ß-d-fucopyranoside (ABFP) was assessed via measurement of antioxidant parameters like lipid peroxidation, glutathione peroxidation, glutathione, protein carbonyl content assays, and caspase-3 activity estimation. Moreover, the acute toxicity of ABFP was estimated in the zebrafish larval model. The results showed that ABFP exhibits little to no toxicity at lower concentrations in the acute toxicity test. ABFP-pretreated and scopolamine-exposed fish exhibited more exploratory behavior in the behavior assay than scopolamine-only induced groups. Additionally, the results of antioxidant enzyme assays revealed reduced oxidative stress and damage in ABFP-treated fish, while enzyme activity experiments carried out with brain homogenate from ABFP-treated fish showed decreased acetylcholinesterase enzyme activity. Overall, it can be concluded that ABFP has the potential to be a promising agent for the treatment of AD in the future.


Assuntos
Doença de Alzheimer , Sesquiterpenos Monocíclicos , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Escopolamina/efeitos adversos , Antioxidantes/metabolismo , Acetilcolinesterase/metabolismo , Carbonilação Proteica , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Estresse Oxidativo , Doença de Alzheimer/induzido quimicamente , Glutationa/metabolismo
5.
Food Chem Toxicol ; 184: 114425, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160779

RESUMO

Bis(2-ethylhexyl) phthalate, generally known as DEHP is a synthetic compound mainly used as a plasticizer to make polyvinyl chloride products flexible and soft. The present work aimed to study the toxicity of Bis(2-ethylhexyl) phthalate on the third instar larvae of transgenic Drosophila melanogaster(hsp70-lacZ) Bg9. The hsp70 gene is associated with the ß-galactosidase in our present transgenic strain therefore, the more activity of ß-galactosidase will indirectly correspond to hsp70 expression. The third instar larvae were allowed to feed on the diet for 24 h having 0.001, 0.005, 0.01, and 0.02 M of Bis(2-ethylhexyl) phthalate at the final concentration. After the exposure of 24hrs, the larvae were subjected to ONPG assay, X-gal staining, trypan blue exclusion test, oxidative stress markers assays, and comet assay. A dose-dependent increase in hsp70 expression, tissue damage, Glutathione-S-transferase (GST) activity, lipid peroxidation, monoamine oxidase, caspase-9 & 3, protein carbonyl content (PCC), DNA damage and decrease in the glutathione (GSH) content, delta-aminolevulinic acid dehydrogenase (ẟ-ALD-D) and acetylcholinesterase activity were observed in the larvae exposed to 0.005, 0.01, 0.02 M of Bis-(2-ethylhexyl) phthalate. The dose of 0.001 M of Bis(2-ethylhexyl) phthalate did not showed any toxic effects and hence can be considered as No Observed Adverse Effect Level (NOAEL) for Bis(2-ethylhexyl) phthalate. The study supports the use of Drosophila for the evaluation of possible toxic effects associated with synthetic compounds.


Assuntos
Dietilexilftalato , Drosophila melanogaster , Ácidos Ftálicos , Animais , Carbonilação Proteica , Larva , Óperon Lac , Acetilcolinesterase/metabolismo , Animais Geneticamente Modificados/metabolismo , Drosophila , Glutationa/metabolismo , beta-Galactosidase/metabolismo , Dietilexilftalato/metabolismo
6.
Cell Biochem Funct ; 41(8): 1330-1342, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37805950

RESUMO

Unpredictable chronic mild stress (UCMS) leads to variable metabolic effects. Oxidative stress (OS) of adipose tissue (AT) and mitochondrial energy homeostasis is little investigated. This work studied the effects of UCMS on OS and the antioxidant/redox status in AT and mitochondrial energy homeostasis in rats. Twenty-four male Wistar rats (180-220 g) were divided into two equal groups; the normal control (NC) group and the UCMS group which were exposed to various stresses for 28 days. An indirect calorimetry machine was used to measure volumes of respiratory gases (VO2 & VCO2 ), total energy expenditure (TEE), and food intake (FI). The AT depots were collected, weighed, and used for measuring activities and gene expression of key antioxidant enzymes (GPx1, SOD, CAT, GR, GCL, and GS), OS marker levels including superoxide anion (SA), peroxynitrite radical (PON), nitric oxide (NO), hydrogen peroxide (H2 O2 ), lipid peroxides (LPO), t-protein carbonyl content (PCC), and reduced/oxidized glutathione levels (GSH, GSSG). Additionally, AT mitochondrial fractions were used to determine the activities of the tricarboxylic acid cycle (TCA) cycle enzymes (CS, α-KGDH, ICDH, SDH, MDH), respiratory chain complexes I-III, II-III, IV, the nicotinamide coenzymes NAD+ , NADH, and ATP/ADP levels. Compared with the NC group, the UCMS group showed very significantly increased OS marker levels, lowered antioxidant enzyme activities and gene expression, as well as lowered TCA cycle and respiratory chain activity and NAD+ , NADH, and ATP levels (p < .001 for all comparisons). Besides, the UCMS group had lowered TEE and insignificant FI and weight gain. In conclusion, AT of the UCMS-subjected rats showed a state of disturbed redox balance linked to disrupted energy homeostasis producing augmentation of AT.


Assuntos
Antioxidantes , NAD , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Ratos Wistar , NAD/metabolismo , Carbonilação Proteica , Oxirredução , Estresse Oxidativo , Trifosfato de Adenosina/metabolismo , Homeostase
7.
Neurosci Lett ; 813: 137418, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37549864

RESUMO

Aging causes substantial molecular to morphological changes in the brain. The brain cells are more susceptible towards oxidative damage due to impaired antioxidant defense system. Sirtuin1 (SIRT1) is a crucial cellular survival protein, which its gene has been identified as a direct target of microRNA 132 (miR-132). Trehalose contributes to preventing neuronal damage through several mechanisms. However, little is known about the interactive effects of aging and trehalose on the expression pattern of miR-132 and SIRT1 in the hippocampus. Male Wistar rats were divided into four groups. Two groups of aged (24 months) and young (4 months) rats were administered 2% trehalose solution for 30 days. Two other groups of aged and young rats received regular tap water. At the end of treatment, the levels of Sirt1 mRNA and its protein, malondialdehyde, protein carbonyl content, total antioxidant capacity, tumor necrosis factor α (TNF-α), as well as the expression of miR-132 were measured in the hippocampus. We found that trehalose treatment upregulated the expression of SIRT1 and miR-132. Moreover, administration of trehalose enhanced the level of total antioxidant activity whereas reduced the levels of lipid peroxidation, protein carbonyl content, and TNF-α. In conclusion, our data indicated that trehalose restored antioxidant status and alleviated inflammation in the hippocampus which was probably associated with the upregulation of SIRT1 and miR-132.


Assuntos
MicroRNAs , Sirtuína 1 , Ratos , Masculino , Animais , Sirtuína 1/metabolismo , Antioxidantes/farmacologia , MicroRNAs/metabolismo , Trealose/farmacologia , Trealose/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Carbonilação Proteica , Ratos Wistar , Hipocampo/metabolismo
8.
Environ Pollut ; 334: 122132, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37414124

RESUMO

The increased prevalence of human infertility due to male reproductive disorders has been linked to extensive exposure to chemical endocrine disruptors. Acrylamide (AA) is a compound formed spontaneously during the thermal processing of some foods that are mainly consumed by children and adolescents. We previously found that prepubertal exposure to AA causes reduced sperm production and functionality. Oxidative stress is recognized as the main cause of reduced sperm quality and quantity. In this sense, our objective was to evaluate the expression and activity of genes related to enzymatic antioxidant defense, nonprotein thiols, lipid peroxidation (LPO), protein carbonylation (PC) and DNA damage in the testes of rats exposed to acrylamide (2.5 or 5 mg/kg) from weaning to adult life by gavage. For the AA2.5 and AA5 groups, there were no alterations in the transcript expression of genes related to enzymatic antioxidant defense. The enzymatic activities and metabolic parameters were also not affected in the AA2.5 group. For the AA5 group, the enzymatic activities of G6PDH and GPX were reduced, SOD was increased, and protein carbonylation (PC) was increased. Data were also evaluated by Integrate Biomarker Response (IBRv2), a method to analyze and summarize the effects on biomarkers between doses. The IBRv2 index was calculated as 8.9 and 18.71 for AA2.5 and AA5, respectively. The following biomarkers were affected by AA2.5: decreased enzymatic activities of G6PDH, SOD, and GPX, increased GST and GSH, increased LPO and PC, and decreased DNA damage. For AA5, decreased enzymatic activities of G6PDH, GST, CAT and GPX, increased SOD and GSH, increased PC, and decreased LPO and DNA damage were observed. In conclusion, AA exposure during the prepubertal period causes imbalances in the testicular enzymatic antioxidant defense, contributing to the altered spermatic scenario in the testes of these rats.


Assuntos
Antioxidantes , Testículo , Humanos , Criança , Masculino , Ratos , Animais , Adolescente , Antioxidantes/metabolismo , Carbonilação Proteica , Testículo/metabolismo , Peroxidação de Lipídeos , Acrilamida/toxicidade , Acrilamida/metabolismo , Sêmen/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Biomarcadores/metabolismo , Glutationa/metabolismo
9.
Acta Neurobiol Exp (Wars) ; 83(2): 216-225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37493537

RESUMO

This study investigated the effects of sub­chronic administration of lead (Pb) acetate on thiobarbituric acid reactive substances (TBA­RS), total sulfhydryl content, protein carbonyl content, antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GSH­Px]), acetylcholinesterase (AChE), and Na+K+­ATPase in the cerebral structures of rats. Male Wistar rats aged 60 days were treated with saline (control group) or Pb (treatment group), at various doses, by gavage, once a day for 35 days. The animals were sacrificed twelve hours after the last administration, and the cerebellum, hippocampus and cerebral cortex were removed. The results showed that Pb did not alter the evaluated oxidative stress parameters. Furthermore, Pb (64 and/or 128 mg/kg) altered SOD in the cerebellum, cerebral cortex and hippocampus. Pb (128 mg/kg) altered CAT in the cerebellum and cerebral cortex and GSH­Px in the cerebral cortex. Also, Pb (64 mg/kg and 128 mg/kg) altered GSH­Px in the cerebellum. Moreover, Pb (128 mg/kg) increased AChE in the hippocampus and decreased Na+K+­ATPase in the cerebellum and hippocampus. In conclusion, sub­chronic exposure to Pb (occupational and environmental intoxication) altered antioxidant enzymes, AChE, and Na+K+­ATPase, contributing to cerebral dysfunction.


Assuntos
Acetilcolinesterase , Antioxidantes , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Acetilcolinesterase/metabolismo , Ratos Wistar , Carbonilação Proteica , Chumbo/toxicidade , Chumbo/metabolismo , Estresse Oxidativo , Catalase/metabolismo , Córtex Cerebral/metabolismo , Superóxido Dismutase/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Encéfalo/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/farmacologia
10.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446788

RESUMO

Oxidative stress and chronic inflammation interplay with the pathogenesis of cancer. Breast cancer in women is the burning issue of this century, despite chemotherapy and magnetic therapy. The management of secondary complications triggered by post-chemotherapy poses a great challenge. Thus, identifying target-specific drugs with anticancer potential without secondary complications is a challenging task for the scientific community. It is possible that green technology has been employed in a greater way in order to fabricate nanoparticles by amalgamating plants with medicinal potential with metal oxide nanoparticles that impart high therapeutic properties with the least toxicity. Thus, the present study describes the synthesis of Titanium dioxide nanoparticles (TiO2 NPs) using aqueous Terenna asiatica fruit extract, with its antioxidant, anti-inflammatory and anticancer properties. The characterisation of TiO2 NPs was carried out using a powdered X-ray diffractometer (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray diffraction (EDX), high-resolution transmission electron microscopy (HR-TEM), dynamic light scattering (DLS), and zeta-potential. TiO2 NPs showed their antioxidant property by scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals in a dose-dependent manner with an IC50 value of 80.21 µg/µL. To ascertain the observed antioxidant potential of TiO2 NPs, red blood cells (RBC) were used as an in vitro model system. Interestingly, TiO2 NPs significantly ameliorated all the stress parameters, such as lipid peroxidation (LPO), protein carbonyl content (PCC), total thiol (TT), superoxide dismutase (SOD), and catalase (CAT) in sodium nitrite (NaNO2)-induced oxidative stress, in RBC. Furthermore, TiO2 NPs inhibited RBC membrane lysis and the denaturation of both egg and bovine serum albumin, significantly in a dose-dependent manner, suggesting its anti-inflammatory property. Interestingly, TiO2 NPs were found to kill the MCF-7 cells as a significant decrease in cell viability of the MCF-7 cell lines was observed. The percentage of growth inhibition of the MCF-7 cells was compared to that of untreated cells at various doses (12.5, 25, 50, 100, and 200 µg/mL). The IC50 value of TiO2 NPs was found to be (120 µg/mL). Furthermore, the Annexin V/PI staining test was carried out to confirm apoptosis. The assay indicated apoptosis in cancer cells after 24 h of exposure to TiO2 NPs (120 µg/mL). The untreated cells showed no significant apoptosis in comparison with the standard drug doxorubicin. In conclusion, TiO2 NPs potentially ameliorate NaNO2-induced oxidative stress in RBC, inflammation and MCF-7 cells proliferation.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Humanos , Feminino , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Carbonilação Proteica , Estresse Oxidativo , Nanopartículas Metálicas/química , Inflamação , Proliferação de Células
11.
Int J Immunopathol Pharmacol ; 37: 3946320231160411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37478026

RESUMO

OBJECTIVE: Carotid atherosclerosis, a major cause of ischemic cerebrovascular events, is characterized by a pro-inflammatory and pro-oxidant vascular microenvironment. The current risk score models based on traditional risk factors for cardiovascular risk assessment have some limitations. The identification of novel blood biomarkers could be useful to improve patient management. The aim of the study was to evaluate the association of selected inflammation- and oxidative stress-related markers with the presence of severe stenosis and/or vulnerable plaques. METHODS: Circulating levels of soluble CD40 ligand, interleukin-10, macrophage inflammatory protein (MIP)-1α, endoglin, CD163, CD14, E-selectin, tumor necrosis factor-α, monocyte chemoattractant protein-1, C-Reactive protein, CD40 L + T lymphocytes, total antioxidant capacity, glutathione reductase activity, and protein carbonyl content were determined in patients with carotid atherosclerosis. RESULTS: Multiparametric analysis showed significantly higher levels of MIP-1α in patients with stenosis ≥70% than in patients with stenosis <70%, and significantly higher levels of CD14 in patients with hypoechoic (vulnerable) lesions compared to those with hyperechoic (stable) ones. The area under the curve obtained by the receiver operating characteristic curve analysis was 0.7253 for MIP-1α and 0.6908 for CD14. CONCLUSIONS: Our data suggest that circulating MIP-1α and CD14 levels are associated with the presence of advanced stenosis and of vulnerable carotid plaques.


Assuntos
Doenças das Artérias Carótidas , Placa Aterosclerótica , Humanos , Biomarcadores , Doenças das Artérias Carótidas/diagnóstico por imagem , Quimiocina CCL3 , Constrição Patológica , Placa Aterosclerótica/diagnóstico por imagem , Carbonilação Proteica
12.
Int J Mol Sci ; 24(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37298684

RESUMO

Protein carbonylation is an irreversible form of post-translational modification triggered by reactive oxygen species in animal and plant cells. It occurs either through the metal-catalyzed oxidation of Lys, Arg, Pro, and Thr side chains or the addition of α, ß-unsaturated aldehydes and ketones to the side chains of Cys, Lys, and His. Recent genetic studies concerning plants pointed to an implication of protein carbonylation in gene regulation through phytohormones. However, for protein carbonylation to stand out as a signal transduction mechanism, such as phosphorylation and ubiquitination, it must be controlled in time and space by a still unknown trigger. In this study, we tested the hypothesis that the profile and extent of protein carbonylation are influenced by iron homeostasis in vivo. For this, we compared the profile and the contents of the carbonylated proteins in the Arabidopsis thaliana wild-type and mutant-deficient in three ferritin genes under normal and stress conditions. Additionally, we examined the proteins specifically carbonylated in wild-type seedlings exposed to iron-deficient conditions. Our results indicated that proteins were differentially carbonylated between the wild type and the triple ferritin mutant Fer1-3-4 in the leaves, stems, and flowers under normal growth conditions. The profile of the carbonylated proteins was also different between the wild type and the ferritin triple mutant exposed to heat stress, thus pointing to the influence of iron on the carbonylation of proteins. Consistent with this, the exposure of the seedlings to iron deficiency and iron excess greatly influenced the carbonylation of certain proteins involved in intracellular signal transduction, translation, and iron deficiency response. Overall, the study underlined the importance of iron homeostasis in the occurrence of protein carbonylation in vivo.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Deficiências de Ferro , Animais , Carbonilação Proteica , Ferro/metabolismo , Arabidopsis/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
13.
Rejuvenation Res ; 26(4): 139-146, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37166369

RESUMO

Acarbose (ACA), a well-studied and effective inhibitor of α-amylase and α-glucosidase, is a postprandial-acting antidiabetic medicine. The membrane of the erythrocyte is an excellent tool for analyzing different physiological and biochemical activities since it experiences a range of metabolic alterations throughout aging. It is uncertain if ACA modulates erythrocyte membrane activities in an age-dependent manner. As a result, the current study was conducted to explore the influence of ACA on age-dependent deteriorated functions of transporters/exchangers, disrupted levels of various biomarkers such as lipid hydroperoxides (LHs), protein carbonyl (PCO), sialic acid (SA), total thiol (-SH), and erythrocyte membrane osmotic fragility. In addition to a concurrent increase in Na+/H+ exchanger activity and concentration of LH, PCO, and osmotic fragility, we also detected a considerable decrease in membrane-linked activities of Ca2+-ATPase (PMCA) and Na+/K+-ATPase (NKA), as well as concentrations of SA and -SH in old-aged rats. The aging-induced impairment of the activities of membrane-bound ATPases and the changed levels of redox biomarkers were shown to be effectively restored by ACA treatment.


Assuntos
Acarbose , Envelhecimento , Membrana Eritrocítica , Inibidores de Glicosídeo Hidrolases , ATPases Transportadoras de Cálcio da Membrana Plasmática , ATPase Trocadora de Sódio-Potássio , Acarbose/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Membrana Eritrocítica/química , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/enzimologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Peróxidos Lipídicos/análise , Ácidos Siálicos/análise , Carbonilação Proteica/efeitos dos fármacos , Compostos de Sulfidrila/análise , Fragilidade Osmótica/efeitos dos fármacos , Animais , Ratos , Masculino , Ratos Wistar , ATPases Transportadoras de Cálcio da Membrana Plasmática/análise , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , ATPase Trocadora de Sódio-Potássio/análise , ATPase Trocadora de Sódio-Potássio/metabolismo , Oxirredução/efeitos dos fármacos , Biomarcadores/análise , Biomarcadores/metabolismo
14.
J Sci Food Agric ; 103(12): 5938-5948, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37186089

RESUMO

BACKGROUND: Ultrasound is widely used as a novel non-thermal processing technique to improve protein properties. In recent decades, applying ultrasound-assisted emulsification (UAE) to produce protein-stabilized emulsion has attracted people's attention. Instead of applying ultrasound to treat a single protein solution, UAE treatment refers to the use of sonication to a mixture of protein and oil. The purpose of this study was to compare the different effects of ultrasound treatment on the properties of myofibrillar protein (MP) in the presence or absence of soybean oil. A suitable sonication power was selected based on the change in emulsion properties. RESULTS: 300 W sonication power was selected because of its most effectively decreased emulsion droplet size and increased absolute zeta potential. Sonication more significantly increased the protein carbonyl content and disulfide bonds of the MP-soybean oil sample compared with the MP sample. Due to the presence of oil, ultrasound could unfold more protein molecules, illustrated by a lower α-helix content and intrinsic fluorescence intensity, and a higher surface hydrophobicity. Results of liquid chromatography-tandem mass spectrometry illustrated that sonication enhanced the myosin heavy chain and actin content at the soybean oil interface as well as accelerated the myosin light chain to separate from myosin in the MP-soybean oil system. CONCLUSION: Ultrasound treatment could lead to a higher level of protein oxidation and greater protein molecule exposure in the MP in the presence of oil system than in the oil-free MP system. © 2023 Society of Chemical Industry.


Assuntos
Óleo de Soja , Humanos , Óleo de Soja/química , Emulsões/química , Carbonilação Proteica , Oxirredução , Interações Hidrofóbicas e Hidrofílicas
15.
Curr Pharm Des ; 29(12): 947-956, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37013424

RESUMO

INTRODUCTION: This paper aims to reveal the molecular mechanism of resveratrol against oxidative stress and cell injury. The ovarian granulosa-lutein cell injury and apoptosis induced by oxidative stress may be responsible for female luteal phase deficiency. The antioxidant function of resveratrol has been confirmed; however, its effect on the expression of antioxidant enzymes and regulatory mechanisms in ovarian granulosa-lutein cells remains unclear. OBJECTIVE: This study aimed to investigate the role of the SIRT1/Nrf2/ARE signaling pathway in the effect of resveratrol on the hydrogen peroxide-induced injury of rat ovarian granulosa-lutein cells. METHODS: In this study, ovarian granulosa-lutein cells extracted from 3-week female SD rats were treated with 200 µM H2O2 in the presence or absence of 20 µM resveratrol. siRNA-SIRT1 and siRNA-Nrf2 were used to inhibit the expression of SIRT1 and Nrf2, respectively. Cell counting kit 8 (CCK-8), cellular morphology, progesterone secretion, and estradiol were used to evaluate cell injury. Hoechst 33258 staining was used to measure cell apoptosis. DHE staining, DCFH-DA staining, malondialdehyde content, protein carbonyl content, total antioxidant capacity and SOD viability were used to estimate the levels of oxidative stress. Western blot analysis was used to detect the levels of apoptosis-related proteins, and SIRT1/Nrf2/ARE signaling pathway-related proteins. RESULTS: The H2O2 treatment-induced rat ovarian granulosa-lutein cells injury was shown as decreased cell viability, impaired cellular morphology, and decreased levels of progesterone and estradiol. The H2O2 treatment also exacerbated cell apoptosis demonstrated as more apoptotic cells stained by Hoechst staining, decreased level of anti-apoptosis protein Bcl-2 and increased level of pro-apoptosis protein Bax. These effects of cell injury and apoptosis induced by H2O2 can be ameliorated by resveratrol. Resveratrol also alleviated oxidative stress induced by H2O2, supported by decreased superoxide anion and cellular total ROS, decreased malondialdehyde and protein carbonyl levels, and increased total antioxidant capacity and SOD viability. Western blot results demonstrated resveratrol reversed the H2O2-induced decrease in levels of antioxidant enzymes containing ARE sequences and activated SIRT1/Nrf2 pathway. Further treatment by siRNA-Nrf2 suggested resveratrol could not activate the expression of antioxidant enzymes under a condition of inhibition of Nrf2. CONCLUSION: This study demonstrates that resveratrol attenuated oxidative stress to protect H2O2-induced rat ovarian granulosa-lutein cell injury and apoptosis via SIRT1/Nrf2/ARE signaling pathway.


Assuntos
Antioxidantes , Células Lúteas , Ratos , Feminino , Animais , Resveratrol/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Peróxido de Hidrogênio/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Células Lúteas/metabolismo , Progesterona/metabolismo , Progesterona/farmacologia , Sirtuína 1/metabolismo , Carbonilação Proteica , Ratos Sprague-Dawley , Estresse Oxidativo , Transdução de Sinais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/farmacologia , RNA Interferente Pequeno/farmacologia , Estradiol/farmacologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Malondialdeído/metabolismo , Malondialdeído/farmacologia , Espécies Reativas de Oxigênio/metabolismo
16.
J Sci Food Agric ; 103(6): 2858-2866, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36620871

RESUMO

BACKGROUND: Protein oxidation during food processing causes changes in the balance of protein-molecular interactions and protein-water interactions, ultimately leading to protein denaturation, which results in the loss of a range of functional properties. Therefore, how to control the oxidative modification of proteins during processing has been the focus of research. RESULTS: In the present study, the intrinsic fluorescence value of the myofibrillar proteins (MP) decreased and the surface hydrophobicity value increased, indicating that the heat treatment caused a significant change in the conformation of the MP. With an increase in heating temperature, protein carbonyl content increased, total sulfhydryl content decreased, and protein secondary structure changed from α-helix to ß-sheet, indicating that protein oxidation and aggregation occurred. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that heat treatment can lead to the degradation of proteins, especially myosin heavy chain, although actin had a certain thermal stability. In total, 733 proteins were identified by proteomics, and the protein oxidation caused by low temperature vacuum heating (LTVH) was determined to be mild oxidation dominated by malondialdehyde and 4-hydroxynonenal by oxidation site division. CONCLUSION: The present study has revealed the effect of LTVH treatment on the protein oxidation modification behavior of sturgeon meat, and explored the effect mechanism of LTVH treatment on the processing quality of sturgeon meat from the perspective of protein oxidation. The results may provide a theoretical basis for the precise processing of aquatic products. © 2023 Society of Chemical Industry.


Assuntos
Calefação , Proteínas , Animais , Temperatura , Carbonilação Proteica , Vácuo , Peixes , Peptídeos , Oxirredução
17.
FEBS J ; 290(8): 2127-2145, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36421037

RESUMO

Reactive oxygen species (ROS) are considered a major cause of ageing and ageing-related diseases through protein carbonylation. Little is known about the molecular mechanisms that confer protection against ROS. Here, we observed that, compared with nondiapause-destined pupae, high protein carbonyl levels are present in the brains of diapause-destined pupae, which is a 'non-ageing' phase in the moth Helicoverpa armigera. Protein carbonyl levels respond to ROS and decrease metabolic activity to induce diapause in order to extend lifespan. However, protein carbonylation in the brains of diapause-destined pupae still occurs at a physiological level compared to young adult brains. We find that ROS activate Akt, and Akt then phosphorylates the transcription factor CREB to facilitate its nuclear import. CREB binds to the promoter of carbonyl reductase 1 (CBR1) and regulates its expression. High CBR1 levels reduce protein carbonyl levels to maintain physiological levels. This is the first report showing that the moth brain can naturally control protein carbonyl levels through a distinct ROS-Akt-CREB-CBR1 pathway to extend lifespan.


Assuntos
Mariposas , Proteínas Proto-Oncogênicas c-akt , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Carbonil Redutase (NADPH) , Longevidade/fisiologia , Carbonilação Proteica , Mariposas/genética , Mariposas/metabolismo , Pupa/metabolismo
18.
Chest ; 163(6): 1395-1409, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36528066

RESUMO

BACKGROUND: Toxicologic studies have reported propylene oxide (PO) exposure may harm the respiratory system, but the association between PO exposure and lung function and potential mechanism remains unclear. RESEARCH QUESTION: What is the association between PO exposure and lung function and potential mediating mechanism? STUDY DESIGN AND METHODS: Urinary PO metabolite [N-Acetyl-S-(2-hydroxypropyl)-L-cysteine (2HPMA)] as PO internal exposure biomarker and lung function were measured for 3,692 community residents at baseline and repeated at 3-year follow up. Cross-sectional and longitudinal associations between urinary 2HPMA and lung function were assessed by linear mixed model. Urinary 8-hydroxy-deoxyguanosine, urinary 8-iso-prostaglandin-F2α, and plasma protein carbonyls as biomarkers of oxidative DNA damage, lipid peroxidation, and protein carbonylation, respectively, were measured for all participants to explore their potential roles in 2HPMA-associated lung function decline by mediation analysis. RESULTS: After adjustment for potential covariates, each threefold increase in urinary 2HPMA was cross sectionally associated with a 26.18 mL (95% CI, -50.55 to -1.81) and a 21.83 mL (95% CI, -42.71 to -0.95) decrease in FVC and FEV1, respectively, at baseline (all P < .05). After 3 years of follow up, 2HPMA was observed to be longitudinally associated with FEV1/FVC decline. No significant interaction effect of smoking or passive smoking was observed (Pinteraction > .05), and the associations between 2HPMA and lung function indexes were persistent among participants who were not smoking and those who were not passive smoking in both baseline and follow-up evaluations. We observed urinary 8-hydroxy-deoxyguanosine partially mediated the associations of 2HPMA with FVC (mediation proportion, 5.48%) and FEV1 (mediation proportion, 6.81%), and plasma protein carbonyl partially mediated the association between 2HPMA and FEV1 (mediation proportion, 3.44%). INTERPRETATION: PO exposure was associated with lung function decline among community residents, and oxidative DNA damage and protein carbonylation partially mediated PO exposure-associated lung function decline. Further attention on respiratory damage caused by PO exposure is warranted.


Assuntos
População do Leste Asiático , Compostos de Epóxi , Pulmão , Fumar , Humanos , Biomarcadores/metabolismo , Estudos Transversais , Desoxiguanosina/metabolismo , Peroxidação de Lipídeos , Pulmão/fisiopatologia , Estresse Oxidativo , Carbonilação Proteica , Compostos de Epóxi/efeitos adversos , Testes de Função Respiratória
19.
Appl Biochem Biotechnol ; 195(2): 772-800, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36173546

RESUMO

Oxidative stress has been implicated in deadly lifestyle diseases, and antioxidants from plant sources are the primary option in the treatment regime. Kenaf seeds are the storehouse of potential natural antioxidant phytoconstituents. Perhaps, none of the studies documented the phytoconstituents and their antioxidant potential from Kenaf seed coat so far. Thus, the current study focuses on exploring the protective effect of Kenaf Seed Coat Ethanol Extract (KSCEE) against sodium nitrite and diclofenac-induced oxidative stress in vitro (red blood cell and platelets model) and in vivo (female Sprague Dawely rat's model) along with the antithrombotic activity. The infrared spectrophotometry data showed the heterogeneous functional groups (CH, OH, C = C, C = C-C) and aromatic rings. Reverse phase high-performance liquid chromatography and gas chromatography-mass spectrometry chromatogram of KSCEE also evidenced the presence of several phytochemicals. KSCEE displayed about 76% of DPPH scavenging activity with an IC50 value of 34.94 µg/ml. KSCEE significantly (***p < 0.001) normalized the stress markers such as lipid peroxidation, protein carbonyl content, superoxide dismutase, and catalase in sodium nitrite and diclofenac-induced oxidative stress in RBC, platelets, liver, kidney, and small intestine, respectively. Furthermore, KSCEE was found to protect the diclofenac-induced tissue destruction of the liver, kidney, and small intestine obtained from seven groups of female Sprague Dawely rats. KSCEE delayed the clotting time of platelet-rich plasma and platelet-poor plasma and activated partial thromboplastin time, suggesting its anticoagulant property. In addition, KSCEE also exhibited antiplatelet activity by inhibiting both adenosine diphosphate and epinephrine-induced platelet aggregation. In conclusion, KSCEE ameliorates the sodium nitrite and diclofenac-induced oxidative stress in red blood cells, platelets, and experimental animals along with antithrombotic properties.


Assuntos
Antioxidantes , Hibiscus , Ratos , Animais , Antioxidantes/química , Ratos Sprague-Dawley , Hibiscus/química , Hibiscus/metabolismo , Fibrinolíticos/farmacologia , Etanol/metabolismo , Diclofenaco/farmacologia , Diclofenaco/metabolismo , Nitrito de Sódio , Carbonilação Proteica , Estresse Oxidativo , Extratos Vegetais/química , Sementes/química
20.
Biol Trace Elem Res ; 201(5): 2341-2354, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35705889

RESUMO

This study was designed to determine the lead or cadmium exposure of Barki rams and the beneficial role of Nannochlorposis oculata (N. oculata) 4% as a feed supplement, as well as its mitigating role against these elements' impacts concerning performance, biochemical markers of liver enzymes and kidney function, thyroid hormone activity, and oxidative stress markers. Six groups of 36 Barki rams (33.63 ± 1.29 kg) were divided into G1: which served as control; G2: was given 4% dietary N. oculata; G3: was given oral 1 mg/kg cadmium chloride; G4: was given 5 mg/kg/day lead acetate; G5: was given oral 1 mg/kg cadmium chloride and 4% dietary N. oculata, and G6: was given oral 5 mg/kg/day lead acetate and 4% dietary N. oculata; and treatments were continued for 60 days. Cadmium and lead-exposed groups exhibited lower and weaker weight gain as well as feed conversion ratio, respectively, than the control and other groups. Additionally, levels of T3, T4, total proteins, albumin, and glutathione (GSH) were significantly reduced in both G3 and G4 compared to control. However, urea, creatinine, ALT, AST, total cholesterol, triglycerides, protein carbonyl content (PCC), and malondialdehyde (MDA) were significantly increased (P ≤ 0.05) in cadmium and lead-exposed groups. Dietary N. oculata (4%) improves serum proteins, creatinine, urea, T4, and oxidative stress indicators as compared to the control group. Finally, 4% dietary N. oculata greatly enhances the investigated parameters in terms of performance, thyroid hormones, serum biochemical, and antioxidant activity and may assist in reducing the endocrine disrupting effects of Pb and Cd.


Assuntos
Cádmio , Chumbo , Cádmio/farmacologia , Chumbo/metabolismo , Cloreto de Cádmio/farmacologia , Fígado/metabolismo , Creatinina , Carbonilação Proteica , Estresse Oxidativo , Antioxidantes/metabolismo , Hormônios Tireóideos/metabolismo , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA